MARS STRATIGRAPHY MISSION

Science

Science objectives

- Determine the geological history of the layered volcanic and sedimentary rocks of Valles Marineris
- Search for evidence of life within the deposits
- Elucidate the history of tectonic, volcanic, eolian and fluvial processes to characterize climate history
- Identify potential habitats for past and present Martian life

▶ Candidate Instruments

- Stereo multispectral imager
- Raman spectrometer
- X-Ray Florescence Spectrometer
- Age dating instrument
- Instrument arm
- Mini-corer
- Sample manipulation assembly
- Calibration targets for imager and x-ray spectrometer

Science operations

- Multispectral imaging, Raman, and XRF analyses every meter
- Sample collection for age dating every 100 meters

Mission

Scenario

- Landing site: 14S, 68W, near the southern canyon wall of Valles Marineris- 20 km circular landing zone
- Traverse to cliff top in <50 days
- Descend 2 km into the canyon on tether in 200 days
- Possible extended mission to canyon floor (6km, 400 days)

Geometry

- 10 km landing error
- Arrive and operate while the sun is north of about –10° declination

Trajectory

- Type IV
- $C_3 \text{ of } 12 \text{ km}^2/\text{s}^2$
- Flight time 30 months
- Arrival V_{∞} ~6 km/s

Delta 7925

LV capability ~975 kg for this C₃

D Earliest Launch dates

April 2007 (assumes 20 day launch period)

Spacecraft

- Performance attributes
 - Land within 10 km of cliff
 - 20 km overland mobility
 - 6 km of cable to lower rover down cliff
 - Rover handles slopes from0 90 degrees

- ▶ Flight system elements
 - Inflatable rover
 - Solar powered
 - Moderate lander
 - Entry system
 - Direct entry
- Margins
 - 30% mass/power contingency carried in design study
 - 40% (400 kg) mass margin

Technology / Infrastructure

- ▶2003 Technology Cutoff
- ▶ Critical Technology Needs
 - Precision navigation and landing
 - Long range mobility over hazardous terrain.
 - In situ instrumentation
 - Telecommunications
 - Light weight drilling and rock sampling devices

- ▶ Candidate Technology Demos
 - Precision navigation and landing (laser
 - Long range mobility over hazardous terrain.
- Infrastructure Needs
 - Relay Orbiter(s)
- Acknowledgements
 - Team X (study 8-99)
 - Kerry Nock, JJ Wu, Dave Farless, Bob Balaram, Steve Townes

